# Getting Started This guide will help you get up and running with LibreYOLO. ## Installation ### Prerequisites - Python 3.10+ - PyTorch (with CUDA support for GPU inference) ### Install from Source ```bash git clone https://github.com/Libre-YOLO/libreyolo.git cd libreyolo # Recommended: install with all extras uv sync --all-extras --group dev # Or with pip pip install -e .[convert,onnx,dev] ``` ### Minimal Installation ```bash pip install -e . ``` ## Download Weights LibreYOLO can automatically download weights from Hugging Face: ```python from libreyolo import LIBREYOLO # Weights are auto-downloaded if not found locally model = LIBREYOLO(model_path="weights/libreyolo8n.pt", size="n") ``` Or manually download from the [Hugging Face repository](https://huggingface.co/Libre-YOLO). ## Your First Detection ```python from libreyolo import LIBREYOLO # Initialize model model = LIBREYOLO(model_path="weights/libreyolo8n.pt", size="n") # Run inference on an image results = model(image="path/to/image.jpg", save=True) # Print results print(f"Found {results['num_detections']} objects") for i, (box, score, cls) in enumerate(zip( results['boxes'], results['scores'], results['classes'] )): print(f" {i+1}. Class {cls}: {score:.2f} at {box}") ``` ## Model Sizes LibreYOLO supports multiple model sizes: | Size | Parameter | Speed | Accuracy | |------|-----------|-------|----------| | `n` (nano) | Smallest | Fastest | Lower | | `s` (small) | Small | Fast | Good | | `m` (medium) | Medium | Balanced | Better | | `l` (large) | Large | Slower | High | | `x` (xlarge) | Largest | Slowest | Highest | ```python # Use different sizes model_nano = LIBREYOLO("weights/libreyolo8n.pt", size="n") model_large = LIBREYOLO("weights/libreyolo8l.pt", size="l") ``` ## Next Steps - {doc}`inference` - Learn about inference options - {doc}`training` - Train on custom datasets - {doc}`explainability` - Visualize model attention with CAM methods