Getting Started

This guide will help you get up and running with LibreYOLO.

Installation

Prerequisites

  • Python 3.10+

  • PyTorch (with CUDA support for GPU inference)

Install from Source

git clone https://github.com/Libre-YOLO/libreyolo.git
cd libreyolo

# Recommended: install with all extras
uv sync --all-extras --group dev

# Or with pip
pip install -e .[convert,onnx,dev]

Minimal Installation

pip install -e .

Download Weights

LibreYOLO can automatically download weights from Hugging Face:

from libreyolo import LIBREYOLO

# Weights are auto-downloaded if not found locally
model = LIBREYOLO(model_path="weights/libreyolo8n.pt", size="n")

Or manually download from the Hugging Face repository.

Your First Detection

from libreyolo import LIBREYOLO

# Initialize model
model = LIBREYOLO(model_path="weights/libreyolo8n.pt", size="n")

# Run inference on an image
results = model(image="path/to/image.jpg", save=True)

# Print results
print(f"Found {results['num_detections']} objects")
for i, (box, score, cls) in enumerate(zip(
    results['boxes'], results['scores'], results['classes']
)):
    print(f"  {i+1}. Class {cls}: {score:.2f} at {box}")

Model Sizes

LibreYOLO supports multiple model sizes:

Size

Parameter

Speed

Accuracy

n (nano)

Smallest

Fastest

Lower

s (small)

Small

Fast

Good

m (medium)

Medium

Balanced

Better

l (large)

Large

Slower

High

x (xlarge)

Largest

Slowest

Highest

# Use different sizes
model_nano = LIBREYOLO("weights/libreyolo8n.pt", size="n")
model_large = LIBREYOLO("weights/libreyolo8l.pt", size="l")

Next Steps